$$
\mathbb{N} \supset \mathbb{Z} \supset \mathbb{Q} \supset \mathbb{R} \supset \mathbb{C}
$$

We begin by introducing a new object
i with the property

$$
i^{2}=-1
$$

Since $x^{2}=-1$ has no solution in \mathbb{R}, $i \notin \mathbb{R}$.

Definition
A complex number z is defined as

$$
z=a+i b \quad a, b \in \mathbb{R} .
$$

The set of all complex numbers \mathbb{C} is known as the complex plane.

Each complex number $z=a+i b$ is identified with the point $(a, b) \in \mathbb{R}^{2}$.

a is called the real part of z and b is called the imaginary part of z -

$$
\operatorname{Re} z=a \quad \operatorname{Im} z=b
$$

Rectangular and polar representation

- Rectangular: $z=a+i b$
- Polar: $z=r \cos \theta+i r \sin \theta$

$$
z=a+i b
$$

with

$$
b=0
$$

Definition $z=a+i b=r \cos \theta+i r \sin \theta \quad z \in \mathbb{R}$
Modulus: $|z|=r=\sqrt{a^{2}+b^{2}} \quad|z|=\sqrt{a^{2}}$
argument: $\arg z=\theta=\arctan (b / a)$

Euler Formula

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta \quad \theta \in \mathbb{R} \\
& \left|e^{i \theta}\right|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 \\
& z=a+i b=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta) \\
& =r e^{i \theta}
\end{aligned}
$$

Example:
Express the following numbers in polar form:
(a) $-2-i 3$
(b) $2+i 3$
(c) $-2+i$
(d) 1-i3
(a)

$$
\text { (a) } \begin{aligned}
& r=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{4+9}=\sqrt{13} \\
&\theta=\arctan (-3)-2) \approx 4 x \\
& \approx 221^{\circ} \approx 0.98+\pi \\
&-2-i 3=\sqrt{13} e^{i(\arctan 3 / 2+\pi)}
\end{aligned}
$$

b) $2+i 3=\sqrt{13} e^{i \arctan 3 / 2}$
(c)

$$
\begin{aligned}
& r=\sqrt{(-2)^{2}+1}=\sqrt{5} \\
& \theta=\arctan (-1 / 2)+\pi \\
& -2+i=\sqrt{5} e^{i(\arctan (-1 / 2)+\pi)}
\end{aligned}
$$

(d) $1-i 3$

$$
\begin{aligned}
& r=\sqrt{1^{2}+(-3)^{2}}=\sqrt{10} \\
& \theta=\arctan (-3 / 1)
\end{aligned}
$$

$$
1-i 3=\sqrt{10} e^{i \arctan (-3)}
$$

Example. Represent the following numbers in the complex plane and express them in rectangular form:
(a) $2 e^{i \pi / 3}$
(b) $4 e^{-i 3 \pi / 4}$
(c) $2 e^{i \pi / 2}$
(d) $3 e^{-3 \pi i}$
(e) $2 e^{i 4 \pi}$
(f) $2 e^{-i 4 \pi}$
(a)

$$
\begin{aligned}
2 e^{i \pi / 3} & =2(\cos \pi / 3+i \sin \pi / 3) \\
& =2(1 / 2+i \sqrt{3} / 2) \\
& =1+i \sqrt{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
4 e^{-i 3 \pi / 4} & =4\left(\cos (-3 \pi / 4)+i \sin \left(-\frac{3 \pi}{4}\right)\right) \\
& =4(-\sqrt{2} / 2-i \sqrt{2} / 2) \\
& =-2 \sqrt{2}-i 2 \sqrt{2}
\end{aligned}
$$

The rest are exercises $\quad \frac{-3 \pi}{4}+2 \pi=\frac{-3 \pi+8 \pi}{4}=\frac{5 \pi}{4}$

Conjugate of a complex number

Definition
The complex conjugate of a number $z=a+i b$ is the number $\bar{z}=a-i b$

Polar: $\bar{z}=r e^{-i \theta}$

$$
\begin{gathered}
z \bar{z}=\underbrace{(a+i b)(a-i b)}_{a^{2}-i a b+i a b+(i b)^{2}}=a^{2}+b^{2}=r^{2}=|z|^{2} \\
i^{2}=a^{2}+b^{2} \quad|z|=\sqrt{z \bar{z}}
\end{gathered}
$$

$$
\begin{aligned}
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \\
& e^{i \theta}+e^{-i \theta}=\cos \theta+i \sin \theta+\cos \theta-i \sin \theta=2 \cos \theta \\
& z+\bar{z}=2 R e z, \quad z-\bar{z}=2 i \operatorname{lm} z \\
& a+i b+a-i b=2 a \quad z=e^{i \theta}
\end{aligned}
$$

Example. For $z_{1}=2 e^{i \pi / 4}$ and $z_{2}=8 e^{i \pi / 3}$,
find (a) $2 z_{1}-z_{2}$
(b) $\frac{1}{z_{1}}$
(c) $\frac{z_{1}}{z_{2}^{2}}$
(d) $\sqrt[3]{z_{2}}$
(a)

$$
\begin{aligned}
2 z_{1}-z_{2} & =4 e^{i \pi / 4}-8 e^{i \pi / 3} \\
& =4(\sqrt{2} / 2+i \sqrt{2} / 2)-8(1 / 2+i \sqrt{3} / 2) \\
& =2 \sqrt{2}+i 2 \sqrt{2}-4-i 4 \sqrt{3} \\
& =(2 \sqrt{2}-4)+i(2 \sqrt{2}-4 \sqrt{3})
\end{aligned}
$$

(b) $\frac{1}{z_{1}}=\frac{1}{2 e^{i \pi / 4}}=\frac{1}{2} e^{-i \pi / 4}$

$$
\begin{array}{lll}
2 & r e^{i \theta} \\
\hat{r} & \theta=-\pi / 4 & \frac{3 \pi-8 \pi}{12}
\end{array}
$$

C)

$$
\begin{aligned}
\frac{z_{1}}{z_{2}^{2}} & =\frac{2 e^{i \pi / 4}}{\left(8 e^{i \pi / 3}\right)^{2}}=\frac{2 e^{i \pi / 4}}{64 e^{i 2 \pi / 3}}=\frac{1}{32} e^{i(\pi / 4-2 \pi / 3)} \\
& =\frac{1}{32} e^{-i 5 \pi / 12}
\end{aligned}
$$

Example. For $z_{1}=3+i 4$ and $z_{2}=2+i 3$ determine $z_{1} z_{2}$ and z_{1} / z_{2}

$$
\begin{gathered}
\frac{z_{1}}{z_{2}}=\frac{3+i 4}{2+i 3} \cdot \frac{2-i 3}{2-i 3}=\frac{(3+i 4)(2-i 3)}{4+9} \\
a+i b \\
r e^{i \theta}
\end{gathered}
$$

$n^{2}-n$ is even
$n(n-1)$
if n is odd, then $n-1$ is even so $n^{2}-n$ is even.
if n is ever, then the result is always even.

If n is a perfect square, then $\sqrt{n} \in \mathbb{Q}$ remember proof $1.9(b)$
(b) $\sqrt{n} \notin \mathbb{Q}$ if n is not a perfect square (HINT: write $n=k^{2} r$, where r does not contain any square factor),

If n is not a perfect square, then at least one of its factors is not a square. So we can write $n=k^{2} r$ where r does not contain any square factors.

Now, we argue by contradiction. Suppose that n is not a perfect square and $\sqrt{n} \in \mathbb{Q}$.
Then we can write $\sqrt{n}=p \mid q, p, q \in \mathbb{N}$, where p and q have no common factors (p/q is in its simplest form).
Then $n=p^{2} / q^{2}=k^{2} r$ or, equivalently, $r=p^{2}$. But this is imposible because $q^{2} k^{2}$
r does not contain square factors. Hence, $\sqrt{n} \notin Q$

Roots of complex numbers

$$
\begin{array}{ll}
z=a+i b=r e^{i \theta+2 \pi i m} & \begin{array}{l}
m \in \mathbb{Z} \\
\\
z^{\alpha}=\left(r e^{i \theta}\right)^{\alpha}=b^{2}
\end{array} \quad \arctan \\
\alpha \in \mathbb{R} \quad e^{i \theta \alpha+2 \pi i \alpha m} & \tan \theta=\frac{b}{a} \quad \theta=\tan ^{-1} \frac{b}{a}
\end{array}
$$

$$
\begin{aligned}
& x^{3}+1=0 \\
& \downarrow \quad r=1
\end{aligned}
$$

$$
m=1: \frac{\pi}{3} i+\frac{2 \pi}{3} i
$$

$$
\begin{aligned}
& m=2: \frac{\pi}{3} t+\frac{4 \pi}{3} c \\
& 2 \pi i m
\end{aligned}
$$

$$
(-1)^{1 / 3}=\left(e^{\pi i+2 \pi i m}\right)^{1 / 3}=e^{\pi / 3 i+\frac{2 \pi}{3} i m}
$$

$$
(-1)^{1 / 3}=-1
$$

